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1. Introduction 

Per tu rba t i on  t r ea tmen t s  are computa t iona l ly  the fastest of all know n  methods  
for es t imat ing  e lec t ron correla t ion.  The  work of Bar t le t t  and  coworkers  [1-5]  
and  others  [6-8]  have d e m o n s t r a t e d  that,  at least for small  molecules ,  a pe r tu rba -  

t ion expans ion  carr ied out  to four th  order  is sufficient to give results within 
ki localorie accuracy of exper iment .  However ,  an exact four th  order  t r e a t me n t  

may not  be  practical  for ab initio methods  since the tr iple excitat ions which 
occur requi re  a lengthy N 7 step, where  N is the n u m b e r  of molecular  orbitals.  

In  this paper  we presen t  an a l te rnat ive  par t i t ion ing  of the H a m i l t o n i a n  different 

f rom the usual  Mol le r -P lesse t  [9] or N e s b e t - E p s t e i n  [10] types used in pe r tu rba -  
t ion theory  which allows for the calculat ion of the triple excitat ions in an N 6 

Table 1. Comparison of canonical (Hartree-Fock) orbital energies and the localized orbital energies a 

Canonical Localized Canonical Localized 
orbital orbital orbital orbital 

Molecule energies energies Molecule energies energies 

CH4 

C2H2 

C2H6 

0.3306 0.3202 C2H 6 
0.3306 0.3202 
0.3306 0.3202 
0.3102 0.3202 

-0.7256 0.8666 
-0.7256 0.8666 CH3CN 
-0.7256 0.8666 
-1.2710 0.8666 

0.5758 0.5015 
0.3455 0.3183 
0.2729 0.3184 
0.2729 0.2531 
0.2557 0.2531 

-0.6428 -0.6627 
-0.6428 -0.6627 
-0.7572 -0.9263 
-0.9752 -0.9263 
-1.3548 -1.2554 

0.3952 0.3845 
0.3740 0.3200 
0.3738 0.3200 
0.3157 0.3200 
0.2967 0.3200 
0.2900 0.3200 
0.2897 0.3200 

-0.6008 -0.8673 
-0.6009 -0.8763 
-0.6688 -0.8763 

-0.8658 -0.8673 
-0.8659 -0.8673 
-1.0740 -0.8673 
-1.4812 -0.9431 

0.5852 0.5105 
0.3538 0.3956 
0.3536 0.2995 
0.3461 0.2995 

0.2806 0.2995 
0.2157 0.2510 
0.2156 0.2510 

-0.5841 -0.6693 
-0.5841 -0.6693 
-0.6353 -0.7675 
-0.8425 -0.8867 
-0.8544 -0.8867 
-0.8545 -0.8867 
-1.3442 -1.0622 
-1.5016 -1.3296 

All energies given in atomic units 
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step. Instead of using a set of canonical SCF orbitals, localized orbitals are chosen 
to describe the system. Although numerous techniques [11 ] exist for transforming 
into a set of localized orbitals, in practice all lead to essentially the same result. 
That is, a set of well localized orbitals is found for the atomic cores, molecular 
bonds, and lone pairs in agreement with the usual chemical description of electron 
pairs. The properties of localized orbitals such as their transferability and their 
better  convergence rate in CI expansion compared to that found using a canonical 
set of molecular orbitals have been well documented [12-17]. Perhaps less well 
appreciated has been the observation that the sets of core, bonding and antibond- 
ing orbital energies are quasi-degenerate among themselves. In Table 1 are 
presented examples for CH4, C2H2, C2H6 and CH3CN for the semi-empirical 
C N D O / 2  model where the localized orbitals ~bi and ~bi* are simply chosen as 
linear and antilinear combinations of a hybridized set of primitive atomic orbitals 
XA and XB on centres A and B respectively. That is 

&i = sin a �9 XA +COS a "XB (la) 

~ i *  = COS Og " , ~ A - s i n  a �9 X8 (lb) 

where a is a "polarity parameter" ;  the case of a = 45 ~ meaning no polarity of 
the bond. All this suggests a partitioning of H based on the average orbital 
energies of the respective sets. The resultant perturbation expansion then has 
denominators which are integral multiples of a small number of constants, the 
constants being simply the differences among the various average orbital energies. 

In this paper we develop this constant denominator perturbation theory for the 
case of a minimum basis. Furthermore we assume that the core may be replaced 
with a suitable pseudo potential. However,  the method Can be easily generalized 
to cases where the core is explicitly considered and extensive basis sets used. 
We begin by briefly reviewing the conventional Moller-Plesset and Nesbet-  
Epstein partitionings of the Hamiltonian. The constant denominator partitioning 
is then derived. Although any constant denominator can be chosen, we choose 
to examine here the average orbital energies variationally modified so that the 
truncated perturbation expanded wave function will yield the lowest bound for 
the Rayleigh-Ritz optimization procedure 

(&IH[6) >_ E. (2) 
<~10> 

Formulae are developed diagrammatically up to and including fourth order in 
the perturbation for the energy. The formal N 7 step found for contributions 
from triple excitations is shown to be reduced into steps which are at most N 6. 
As examples, results are presented calculated within the semi-empirical PPP 
[18] and C N D O / 2  [19] model Hamiltonians 

2. Partitioning of the Hamiltonian 

One starts any perturbation treatment for the energy by partitioning the Hamil- 
tonian, H, into a completely solvable zero order part, Ho, and a remainder 
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known as the perturbation, V 

H = H o +  V (3a) 

where 

Ho]~i) = Fi]Oi) i = 0, 1, 2 . . . . .  (3b) 

In addition, Ho is usually chosen to be a one particle operator in order that the 
linked diagrammatic representation of the perturbation can be used 

Ho=Y u~(~) (4a) 
cr 

with 

1~,)--- A 1-[ Ir (4c) 

gl = [I e~ (4d) 
o:ei 

where A is the antisymmetrizer and u~ is a single particle operator. In the case 
of Moller-Plesset partitioning, H0 is chosen to be the Fock operator and therefore 
due to Brillouin's theorem the perturbation V contains only Coulombic bielec- 
tronic repulsion and exchange integrals. In contrast, the Nesbet-Epstein par- 
titioning is based on the matrix representation of the SchrSdinger equation 

/40 = E 0  (5) 

H0, the zero order Hamiltonian is chosen simply as the diagonal of H with the 
remaining off diagonal matrix forming the perturbation V. In the case of spin 
adapted configurations, 0, one obtains a corresponding spin adapted Nesbet- 
Epstein partitioning. Calculations [20] show that this spin adapted partitioning 
is more convergent than the ordinary expansion over determinants. However, 
since the denominators in the perturbation expansion now are coupled by 
bielectronic matrix elements, they cannot be factored to yield a linked diagram- 
matic representation. In order to achieve the Nesbet-Epstein result from a 
diagrammatic formulation of the perturbation one must first start from a Moiler- 
Plesset reference, generate the necessary diagrams and then group into geometric 
sums classes of diagrams known as ladder diagrams. The geometric sums are 
then replaced by inserting bielectronic interactions into the denominators of the 
leading terms. This is essentially the procedure that Kelly [23] used with great 
success for atomic systems. However Bartlett and Shavitt [24, 25] found in the 
case of the linearized CPMET model [26] that Nesbet-Epstein partitioning led 
to oscillatory behaviour and produced a slower convergence than that found for 
Moller-Plesset partitioning [22]. 
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3. The Constant Denominator Partitioning 

The quasi-degeneracies found among the sets of localized orbital energies allow 
for a consideration of a partitioning of H based on the average values of the 
respective sets. In the case of a minimum basis with a pseudo potential approxi- 
mated core one has two sets, namely the bonding and antibonding orbitals {&i} 
and {&i. } respectively. Therefore 

Ho g'Y~ai~;ai+~*Y~ t = ai*ai* (6) 
i i 

v = H - Ho (7) 

1 n 

i=1 

1 M 
e* = M i~1 e i*. (9) 

The resulting denominators found in the perturbation expansion, as for example 

Ae~* = e i -  ei* (10a) 

Ae~ *r = ek + e l - - e l *  --el* (10b) 

are reduced to integral factors of a constant denominator, AE, given by 

Ae = g - g*. (10c) 

One can improve on the partitioning with very little additional computational 
effort by treating the constant denominator as a variational parameter, AAe, 
with A chosen to give the best trial wave function 

M 

107-) = lOo)+ Y~ ]0q(a)). (11a) 
q= l  

Following the Rayleigh-Ritz variational principle, the resulting upper bound to 
the true ground state energy is given by 

M Hp,~ ->E (11b) 
w = E  l + S  pq=O 

with 

Hp, q = (OplHIOq) (1 lc) 

S =  E S.,q ( l ld )  
pq= 1 

S.,q = (0pl0q). (11e) 

The wave function corrections, ]Oq), can be found from the perturbation equation 

q 

( H o - g o ) l O q )  + VJOq-1)  = E Er]Oq-r) ( 1 2 a )  
r -1  
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or in terms of matrix elements 

q 

Tp, q q-Wp, q_ 1 = E ErSp,q-r ( 1 2 b )  
r = l  

with 

Tp,q = ( OplHo - g0l~Pq) (12c) 

Vv,q = (0pl VlOq). (12d) 

Therefore Eq. ( l lb )  can be expanded as 

M M M 

Y~ Tp.q + Y~ Vp.q-l + Y~ VpM 
W = go + pq=O pq=o p=o 

1 + S  

Mr M q M 

~. E E E,Sp.q_,+ ~. (VpM-E1SpM) 
= ~o+E1 + p=o q=2 r=2 ~=o (12e) 

1 + 8  

or substituting for VpM, using Eq. (12b) yields 

M q M M + I  M 

Z Y~ E,Sp.q_r+ Z • E,Sp,v-r+,- Y~ T,.M+I 
, . o + E l + p q = O  r=2  p=O r=2 p=0  W =  

I + S  

M + I  q M M 

E E E Sp,q_,- Y~ Tp,M+~ 
e -- .~,  - -  20.j_ l~,l.a. " q=2  r = 2 p = 0  p = l  

I + S  
(12f) 

By varying h, the partitioning changes, producing a new set of perturbation 
energies E .  (h) and matrix elements Sv, q (h) and Tp q (h) Noting that 

E2 E2 ~ (_l)r  (13a) 
E2 = (h + (1 -- h)) ~ 7 r=o 

E3 = (h + (1_ h))2- ~-~ =~o (-1)r ( r+ l )  (13b) 

E n  = (/~ --[-- ( i  : ,~))n--1 --  ]~ n--1 ~=0 r (13c) 

where the binomial coefficient ( : ) i s  defined as 

(2) m!(n - m ) !  " (13d) 

Regrouping terms, we obtain 

E2(A) =--E2 (14a) 
A 
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E~ 3' E~ 2~ 
r-~(3 , . x / 3 3 )  I ,A)= /~2 /~2 ( l - a )  

209 

(14b) 

(7) En(,~)=~_~ E E~_i(-1) ' (1-h)"  n 2 . (14c) 
i=0 

In a similar fashion 

1 PZ. 1 , � 9  
[~p (,~)) -- ~-F r}O lOp_D[ 7 1)(--1)r(1--h) ' (15a) 

from which is obtained expressions for the matrix elements Sp,q (,~) and Tp, a (h). 

Tp'q(h)=A-F;-g ~2 ~] p 1 q 1 (_l)m+~(1 m+~ - h )  Tp-m,q-,,. (15c) 
rn~0 n=0 

In the case of a perturbation expansion (11) carried out to first order Eq. (12f) 
simplifies to 

W = ~o+EI  +E2(A) TI,2(A) 
l + S ( h )  

= & +El  + Eg(h) +E3(h) (16a) 
l + S ( h )  

Substitution of relations (13) yields 

2E2 E3 E2 
h q h ~ h 2 

W = ~o+E1 + (17) 
S 

lq  h2 

The solution to 0 W/OA = 0 is then given by 

h = 1[(1 - ~,) + , / ( i  - ,)/)2.4_ 4S] (18a )  

where 

y = EB/E2. (18b) 

It is interesting to note that while the new perturbation series generated gives 
the correct bound at second order, third order becomes simply a scaled Langhoff- 
Davidson correction [27] for the unlinked terms arising out of the use of the 
variational principle. That is 

1 
W =  e0 + E l  +~- E2 (19a) 
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E 3  E 2  

1 �9 E z  
- (A) [y -  I+A] .  (19b) 

A 

We observe that Eq. (17) is the solution to the quadratic 

A2-A(1 - y ) - S  = 0 (20a) 

S 
- =  S(A) = V - 1 +~.  (20b) 

Hence substitution into Eq. (19b) yields the final scaled correction 

1 
E3(A) =-~. Ez(A)" S(A). (21) 

This scaled Langhoff-Davidson correction should approximately cancel the error 
caused by the unlinked clusters generated by Eq. (19a). If E3(A) is added to Eq. 
(19a) for this purpose, then, of course, W is no longer necessarily an upper bound. 

4. Perturbat ion F o r m u l a e  to Fourth Order  

The resulting perturbation or remainder of the Hamiltonian is defined for the 
Constant Denominator  Perturbation Theory  (CDPT) model as 

V = H - H 0  

* + *+ 
=Y~ (p]Mlq)rl[apaq] Y. E (Pql[rs)rt[apaqasar] (22a) 

pq p > q  r>s 

with indices p, q, r and s running over both the occupied and virtual space of 
spin orbitals. The monoelectronic operator,  M, and the normal product, ~/, are 
defined respectively as 

M =  Z (plflq)~l[a~aq]+ E {(ilfli)-g}~[a~ai] 
p C q  i 

+ Y~ {(i*lfli*) - g*}'q [a ~,a i* ] (22b) 
i 

r t t t p t t t 
�9 "" (--1) (a2a4a5 ' ' a l a 3  rttala2a3a4a5 an] . . . . .  an) (22c) 

where p is the parity of the permutation required to put all creation operators, 
a~, before any annihilation operators, a i in Eq. (22c). The perturbation energy 
terms may be expressed in the symmetric form 

E=,-1 = (4~,lEo- HoltP,-,)r_ 

E2,, = (0,  l E o -  Hol0,>L 

IO.>= RVl4,.-1) 

(23a) 

(23b) 

(23c) 
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where the subscript L means that only linked diagrammatic representations are 
to be considered. The symmetric formulation and the rules for diagrammatic 
usage have been previously given in Refs. [21] and [22]. 

In the case of the first order wave function, ~pl, the diagrammatic equations for 
single and double excitations are simply given by 

~ )  = ~ (24a) 
x 

i (24b) 

where the open single arrows pointed to the left and right indicate individual 
particle and hole states respectively. The above equations are equivalent to 

14,~:) = {i*t/h q~*) = (i*lf]/)i~i,~:. ) (25a) 
Ae 

'*J* - { ,  I I I / /h l%g ) -  I~'kt ) (25b) ]01k~ ) -  "*'* i.j* (i*]*]]kl) ,.j. 
2Ae 

where the pseudo one and two electron matrix elements {i*l]h and {i*]*] ]kl}l 
are defined by their respective equations with 

(i*]*] Ikl) = ( i* ]* l k l ) -  (i*]*]lk ). (25c) 

The resulting diagrammatic equation for the second order energy is then 
given by 

Z 2 = ( ~ ~  + ~ (26) 

where the solid arrows are used to indicate summations over all possible 
particle and hole states. Using Eqs. (23) to (25) the above is re-expressed 
algebraically as 

E2 = Y. {]]i*}l(i*lf)l + Y~ 5~ {kl] Ii*f*}l(i*f*l Ikl)~ 
i] k > l  i>] 

where the sums are over spin orbitals and 

(i*lJh = 2xe{i*ljh 

(i*j*] Ikl)~ = 2Ae{i*]*] ]kl}l 

{]1i*}~ = {i*1]}~ 

{kll Ii*]*}1 = {i*]*] Ikl}~. 

(27a) 

(27b) 

(27c) 

(27d) 

(27e) 
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In a similar fashion the single and double excitations of the second order wave 
function, ~92, that can be represented by connected diagrams are defined by the 
following equations 

x 

x 

x 

(28a) 

+ 

i 

+ + 1 

(28b) 
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where the solid arrows are used again to represent summations. In order to 
preserve the antisymmetry property of the bielectronic pseudo matrix elements 
all possible interactions on both open loops must be considered. Using the rules 
of diagrammatic perturbation theory, Eqs. (28a, b) can be re-expressed in alge- 
braic form as 

,, (i*]fh I@}*)- "* ' '* 
= - 1~ b I 2 1 r  ) IO2,)c Ae 

with 

(29a) 

(i*]J)2 = Z (kJMJj){i*pk }l + Z (i*lMlk*){k*rjh - ~  (ki*l IjZ*){Z*lk}, 
k k k l  

+Z ~, (mi*] Ik*l*){k*l*t [mjh-2  E (kll pm*j){m*i*] Iklh 
m k > l  rn  k > l  

+ Y (klM]l*i*){l*i*] [kjh (29b) 
k l  

and 

m* (i*j*l Ikl)2 ~*i* m* 16kt ) c -  16k, )={i*J*llkl}2ldPkl ) (29c) 2Ae 

with 

(i*/'*] ]kl)2 = - 2  (klMIm)Ii*j*] Iml}~ + Y, (m*lMli*){rn*j*l Ik/}l 
rn  m 

- Y~ (llM]m){i*j*] ]kmh + E (m*]Mlj*){i*m*] ]k/}l 
rtl 

- E (mi*] Ikn*){n*j*l Iml}~ - Y~ (mj*] Iln*){i*n*l Ikmh 
rr t~  m n  

- E (mi*J Ikn*){i*n*] ]mlh- 2 (i'm] In*t){n*FI Jkmh 
rr tn  rr ln  

+ Y~ (mn]lkl){ i*j*]lmnh+ Y~ (i*j*llm*n*){m*m*]lklh 
m > n  m > n  

- E (i*m I lkl){j*lmh + ~ (i*j*] Ikm*){rn*]/}l 
m m 

- 2  (mf*l Ikl){i*]rnIi + 2  (i*j*l ]m*l){m*lk}l. 
rn  

(29d) 

As always, sums are over spin orbitals. The subscript, C, implies only connected 
types of diagrammatic excitations. In addition, triply connected diagrammatic 
excitations occur in ~2. These are formally generated from the diagrammatic 
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equation 

+ + 

I 

i 
i 

>/  

(30a) 

i : : 

where all possible interactions on all possible loops are considered so that the 
resulting compound matrix element {i*j*k*llmn}z is symmetric with respect to 
interchange of pairs of particle and hole lines. The compound matrix element 
is defined as [22] 

{i*]*k *llmn}2 = (i*]*k *llmn)2 
3Ae 

(i*j* k*llrnn )2 = Y+ [ - ( i * P l  Ilm){j*k *l Ipm}l + 
P 

+ (i*]*l Ilp*){p*k*l [mn}l - (i*pl Iln){]*k*l Imp}l + 

(30b) 

(3Oc) 
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+ ( i ' k*  I [Ip*){j*p*[ Imn}l - (p]*[ ]lm){i*k*] Ipn}l + 

+ (i*j*[ [p*rn){p*k*[ [ln}l- (]*p[ Imn){i*k*[ Ilph + 

+ (/*k*l Imp*){i*p*l I ln}l-  (pk*] ]ln){i*/*l Ipm}l + 

+ (i'k*] Ip*n){p*]*l Ilm}x - (pk*l Imn){i*]*] ]Ip}l + 

+ </'I,*1 Ip*n){i*p*J I/m}1]. (30d) 

It can be seen that Eq. (30) is a n  N 7 step for ab-initio methods, although for 
semi-empirical schemes such as CNDO/2 and PPP the evaluation is N 3 in a 
basis of bonds and antibonds. However, unlike Nesbet-Epstein [10] or Moller- 
Plesset [9] partitioning schemes, there is no coupling of components through 
the denominators. It will be seen in the next section, that when the resulting 
energy diagrams arising from the connected triples are considered, all evaluation 
steps can be reduced to N 6 o r  less due to this decoupling. 

In addition to the diagrammatically connected excitations, there is the possibility 
of independent single and double excitations occurring simultaneously in the 
system, resulting in net double, triple, or quadruple excitations. These excitations 
are represented by the following disconnected diagrams. 

| 
(31a) 

DC 

(31b) 

(31c) 
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where the subscript "DC" implies only disconnected diagrams are considered 
and double arrows are used to indicate that all possible combinations of indices 
which give rise to the same individual excitation are taken into account. From 
the factorization lemma [28], one knows that the product, (~), of the disconnected 
parts generates all possible (time) orderings that these components can have 
with each other; for example 

(32) 

Since the resulting energy expansion will be expressed in terms of the individual 
connected parts of the wave function diagrams, be they connected or discon- 
nected, it is unnecessary to consider the algebraic formulations of Eqs. (31). In 
addition, many of the resulting exclusion principle violating (EPV) energy 
diagrams are found to cancel against other contributions which are formally 
triple and quadruple excitations due to differences in their spin parts. This was 
previously demonstrated for the zero differential overlap (ZDO) case in Ref. 
[22]. Although we do not make formal use of this cancellation and let it occur 
naturally, we can for the ab-initio case develop a similar explicit cancellation 
using Goldstone diagrams. 

From the first order wave function, 01, of Eqs. (25), the second order energy, 
E2, found from Eq. (23b) is given diagrammatically as Eq. (26). Similarly, the 
use of 01 with the second order wave function, 02, in Eq. (23a) leads to the 
diagrammatic Eq. for E3, the third order energy. 

where the disconnected double excitation found in the last term is generated 
from the product of two single excitations as previously discussed. The above 
yields the algebraic equation 

E3 = E { /1 i * } , ( i *1 . / )2  + E E {kll li*j*h{i*i*l Ik/}2 
ij i '>j k > l  

+ E E (kllli*J*)lE{i*lk}lF{f*ll}l-{i*ll}l{f*lk}l] (34b) 
i '>j k > l  



A Constant Denominator Perturbation Theory 217 

Finally, the fourth order energy, E4 can  also be diagrammatically generated 
from ~2 and Eq. (23b) 

+ 
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where all possible topologically distinct orderings of the disconnected parts of 
the diagrams are taken. Thus algebraically one has 

1 ~ 4  = ~ {jli*}2(i*lj)2 + Y Y~ {kll li*j*}2(i*j*l Ikl)2 
ij i > ]  k > l  

+ E E E {lmnli*/*k*}2(i*j*k*llmn)2 
i > j  k > l  m > n  

+ 2  E E (kllli*j*)2E{i*lkh{j*llh-{i*ll}l{j*lkh] 
i > ]  k > l  

+ 2  Y. Y. Y, (Imnli*j*k*)2{i*/*lllm}l{k*lnh 
i > j  l > m  k n  

- Y~ Y~ (kli*h{llf*}l{f*lk}l{i*[l}l 
i > ]  k > l  

+ 2 2 Y~ [(Imlli*/*)l{n ]k*h + {lm lli*j*}l(n Ik*)~]{i*ll}l{/*k*l Imnh 
i l k  l m  n 

- Y~ Y, ~. [(Irn I li*j*h{n [k*}l + {lm [ Ii*]*h(n Ik*h]{i*k*l Ilmh{y*ln}l 
l > m  (ik n 

- Y~ ~ Y, [(lm] li*/*h{n[k*}l +{lml [i*j*h(nlk*h]{i*j*l ]lnh{k*[mh 
i>!" k l  ran 

-Y~Y~ ~ Y~ (i*j*llmn)~{k*l*llpqh{i*k*[lmnh{/*l*l IPq}~ 
ff  k l  m > n  p > q  

- Y, F, ~ ~ (i*/"11mn)~{k*l*[Ipq}~{i*j* I Imp}~{k*l*l Inq}~ 
i>]  k > l  ran pq 

- Y, Y~ ~ F, (i'j* I Imn h {k *l*l Ipqh {i*k *] lmp h{]*l*[ [nqh 
i] k l  ran pq 

+ ~ Y, Y. Y~ (i*]*llmn)l{k*l*llpq}~{i*j*[lpqh{k*l*llmn}l (35b) 
i?>j k > l  m n  pq 

where all matrix elements have been assumed real, so that for reversed ordered 
pairs of diagrams, such as 

only the first member  is considered and multiplied by a factor of two to include 
the contribution of the other partner. 
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5. The Energy Contributions of the Connected Triple Excitations 

The contributions from the connected triple excitations are given by 

(Connected~ CC-Triple CD-Triple 
E4\ Triples j = / ~ 4  § (36a) 

with 

ECC-Triple 4 = • ~ {Imnli*i*k*}2(i*f*k*llmn>2 (36b) 
i > j > k  l > m > n  

E Co-Triple = 2 E Y. E(lmn[i*j*k*>a{i*/*lllm}l{k*]nh. 
i>] l>m kn 

Diagrammatically, the connected-connected triple excitation 
ECC-Triple 4 , is represented by 

ECC-Triple ~) + 2 . . 

(37a) 

or algebraically this yields 

E4CC_Triple 1 
=12A ~ [i~ (lmlli*q)(i*p]]lm)] [,~k,, {qnl]]*k*}l{J*k*llpn}e] 

2 3A ~ [~ {mnllq*k*}l{f*k*llpn}l] [~ {lq*]li*J*)(i*p]llm)] 
i 

X[~ {mnllq*k*}l{P*k*llmn}l] 

+11__ ~ ~ [~ {qnllj,k,}e{,k,llmn) ] [~ (mlllqi,){i,f,lllp}i ] 
3 A pq jm 

2 3 ~  [~ {Pnllf*k*}e(j*k*llq*n)] [~i {lm]li*p}{i*q*lllm}l] 

(36c) 

contribution, 
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•  (Ip*lli*j*){i*q*]llrn}l]. (S7b) 

G, CD-Triple Similarly, the connected-disconnected triple excitation contribution, ~4  
is represented by 

< 2 ~  " 

In the above, all orderings of the disconnected components are implied from 
the factorization lemma [28]. The diagrams of Eq. (38a) are represented algebrai- 
cally by 

j~CD-Triple =__~p ~ [/~/{l[i,}l(i,p[]lm) ] [i~k n {mn]ly,k,}l{f~Ck,[]pl, i}l] 

(38b) 
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Thus it is seen that all contributions f rom connected triple excitations can be 
evaluated in steps that are at most  N 6. 

6. Results and Discussion 

Results for the PPP model  Hamil tonian are displayed in Table 2. The second 
order energy provides a useful bound; for the linear molecules this energy is 
below the Har t r ee -Fock  energy. At  fourth order the constant denominator  
theory seems superior to either Moller-Plesset  or Nesbet -Eps te in  theories, and 
is very accurate in the linear cases. None of these theories are particularly good 
for the aromatic situations with pathologically large/3 values. 

In Table 3 the C N D O / 2  model  Hamiltonian [31-35] results corroborate  these 
findings. In particular the second order energy is a bound and in all cases (except 
CH3NC: nonoptimized polarities (36)) is a bet ter  bound than the Har t ree -Fock ;  
as hoped for, much of the correlation present  in the doubles is already included 
compared  with CISD. 

Comparing with the PPP results of Table 2 we might conclude that deficiencies 
at second order are arising in strongly delocalized systems, and that these 
deficiencies due to delocalization (single excitations) are not fully corrected at 
fourth order. The third order, however,  on the average appears  to be as accurate 
as CISD when compared with the exact results when known. 

For small systems such as CH4, NH3, H20 ,  where singles and doubles might be 
expected to contain most of the correlation, the fourth order results lie very 
close to the CISD, Table 3. In addition, the fourth order CDPT values lie 
between the MP and NE numbers.  For larger systems CDPT is above fourth 
order MP or NE theories, and below CISD by an amount  that might be considered 
reasonable.  

The difference between optimized and nonoptimized polarities gives an indication 
of the behavior  and convergence of the perturbat ion series. As one goes to 
higher orders this difference should approach zero. In the case of CH3NC, the 
CDPT model  reduces the difference between optimized and nonoptimized results 
of - 1 6 6 k c a l / m o l e  at first order to - 4 5 k c a l / m o l e  at second order and 

Table 4. Energy differences obtained between a reference function of optimized v s .  standardized 
bonds (kcal/mole) a 

Fourth Order Fourth Order Fourth Order 
t0 + e CDPT MPPT NEPT CISD 

CH3CN -6.6 -2.2 1.6 6.3 -0.6 
CH3NC - 166.1 -34.2 17.4 283.9 - 16.4 
H20 -22.4 -1.7 0.4 8.7 -0.6 
NH3 -9.1 -1.7 0.2 3.1 -0.4 

a 1 kcal/mol = 1.6 milli-Hartree 
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- 3 2 4  k c a l / m o l e  at four th  o rde r ,  to  be  c o m p a r e d  with  a 17 k c a l / m o l e  d i f ference  
o b t a i n e d  f rom M P  four th  o r d e r  theory ,  a 284 k c a l / m o l e  d i f ference  o b t a i n e d  
f rom the  N e s b e t - E p s t e i n  fou r th  ol:der theory ,  and  - 1 6  k c a l / m o l e  for  CISD,  
T a b l e  4. S imi lar ly ,  for  H 2 0  the  d i f fe rence  of - 2 2 . 4  k c a l / m o l e  has  b e e n  r e d u c e d  
to - 1 . 7  k c a l / m o l e  and  for  NH3 f rom - 9 . 1  k c a l / m o l e  to - 1 . 7  k c a l / m o l e .  In  all 
cases  mos t  of this co r r ec t ion  is a l r e ady  at  s econd  o rder .  The  ind ica t ion  he re  is 
tha t  C D P T  is nea r ly  as accu ra t e  as is the  m o r e  t i m e - e x p e n s i v e  fou r th  o r d e r  
M P P T  and  C I S D  in t r ea t ing  po la r i za t ion ,  and  much  m o r e  accura te  then  N E P T  
which  is ve ry  sens i t ive  to  the  choice  of z e r o ' t h  o r d e r  funct ion .  

G e o m e t r y  p red ic t ions ,  T a b l e  5, a re  as g o o d  as can be  e x p e c t e d  in the  C N D O / 2  
t r e a t m e n t  wi th  essen t ia l ly  no d i f fe rence  in resul ts  b e t w e e n  th i rd  and  fou r th  o r d e r  
theor ies .  

Table 5, Geometry predictions of constant denominator perturbation theory 

Bond Third Fourth 
distance or order order 

Molecule angle a result result Experimental Reference 

CH4 
H20b 

H20 

NHbRNH 

NH3 

C2H2 

H2C0 b 

H2CO 

C2H4 

CH3CN b 

CH3CN 

CH3NC 

C2H6 

RCH 
ROll 
0(HOH 
ROll 
0(HOH 

0(HNH 
RNH 
0(HNH 
Rcc 
-gcH 
Rco 
RCH 
Rco 
RcH 
Rcc 
NCH 
RCN 
NCC 
RCH 
RCN 
Rcc 
RCH 
RNC 
RCN 
RCH 
Rcc 
RCH 

1.124 1.125 1.085 [37] 
1.043 1.047 0.957 [38] 
104.5 102.6 104.5 
1.043 1.047 0.957 
104.5 102.6 104.5 

1.012 [39] 
106.7 

1.078 1.012 
106.6 1.067 
1.225 1.225 1.205 [40] 
1.102 1.106 1.059 
1.273 1.256 1.210 [41] 
1.112 1.125 1.128 
1.273 1.256 1.210 
1.112 1.126 1.128 
1.335 1.337 1.336 [42] 
1.118 1.121 1.103 
1.208 1.215 1.15 [43] 
1.460 1.459 1.460 
1.126 1.128 1.112 
1.208 1.215 1.15 
1.460 1.459 1.46 
1.127 1.130 1.112 
1.208 1.208 1.18 [43] 
1.419 1.419 1.44 
1.119 1.119 1.09 
1.476 1.473 1.532 [44] 
1.129 1.121 1.107 

a All bond distances are given in Angstroms and angles in degrees 
u Optimized bond polarities 
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Tenta t ive ly  we hold that  the C D P T  theory is the most  stable of the four th  order  

theories  we have examined.  The  N e s b e t - E p s t e i n  theory  at four th  order  is very 
sensit ive to the zero ' th  order  funct ion  and can be unrel iable .  The  Mol le r -P lesse t  
pe r tu rba t ion  theory (MPPT) at four th  order  appears  stable. For  small  systems, 
however ,  C D P T  appears  to lie closer to the exact answer  where  the numbe r s  
are available.  F rom Tab le  3 four th  order  Mol le r -P lesse t  also seems to correct  
for deficiencies in b o n d  polar izat ion of the zero ' th  order  funct ion.  It is more  
difficult to evaluate  the relat ive pe r fo rmance  of C D P T  vs. M P P T  for larger 
systems where  exact answers are not  yet available.  For  such systems M P P T  may  
have an advantage  of be ing  size consis tent  at all orders,  whereas  the var ia t ional  

p rocedure  adap ted  at second order  for C D P T  int roduces  n o n - l i n k e d  terms that  
yield stability, bu t  that  are not  corrected for unt i l  higher  orders.  This deficiency, 
however ,  is not  a consequence  of the cons tant  d e n o m i n a t o r  pe r tu rba t ion  theory,  
bu t  only  of our  choice of cons tant  denomina to r .  D e n o m i n a t o r s  can be chosen 

to yield a l inked theory at all orders,  and  we are present ly  invest igat ing such 

choices. 
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