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A “constant denominator’” perturbation theory is developed based on a
zeroth order Hamiltonian characterized by degenerate subsets of orbitals.
Such a formulation allows for a decoupling of the numerators of the perturba-
tion sequence, allowing for much more rapid evaluation of the resultant sums.
For example, the full fourth order theory can be evaluated as an N 6 step
rather than N7, where N is proportional to the basis set.

Although the theory is general, a constant denominator is chosen for this
study as the difference between the average occupied and average virtual
orbital energies scaled so that the first order wavefunction yields the lowest
possible variational bound. The third order correction then appears naturally
as a scaled Langhoff-Davidson correction. The full fourth order with this
partitioning is developed. Results are presented within the localized bond
model utilizing both the Pariser-Parr—-Pople and CNDO/2 model Hamil-
tonians. The second order theory presents a useful bound, usually containing
a good deal of the basis set correlation. In all cases examined the fourth
order theory shows remarkable stability, even in those cases in which the
Nesbet-Epstein partitioning seems poorly convergent, and the Moller-Plesset
theory uncertain.
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1. Introduction

Perturbation treatments are computationally the fastest of all known methods
for estimating electron correlation. The work of Bartlett and coworkers [1-5]
and others [6-8] have demonstrated that, at least for small molecules, a perturba-
tion expansion carried out to fourth order is sufficient to give results within
kilocalorie accuracy of experiment. However, an exact fourth order treatment
may not be practical for ab initio methods since the triple excitations which
occur require a lengthy N step, where N is the number of molecular orbitals,
In this paper we present an alternative partitioning of the Hamiltonian different
from the usual Moller-Plesset [9] or Nesbet-Epstein [10] types used in perturba-
tion theory which allows for the calculation of the triple excitations in an N°

Table 1. Comparison of canonical (Hartree—Fock) orbital energies and the localized orbital energies”

Canonical Localized Canonical Localized
orbital orbital orbital orbital
Molecule energies energies Molecule energies energies
CH, 0.3306 0.3202 C,Hg —0.8658 —0.8673
0.3306 0.3202 —0.8659 -0.8673
0.3306 0.3202 -1.0740 ~0.8673
0.3102 0.3202 ~1.4812 —0.9431
—0.7256 0.8666
—0.7256 0.8666 CH,CN 0.5852 0.5105
-0.7256 0.8666 0.3538 0.3956
-1.2710 0.8666 0.3536 0.2995
0.3461 0.2995
C,H, 0.5758 0.5015 0.2806 0.2995
0.3455 0.3183 0.2157 0.2510
0.2729 0.3184 0.2156 0.2510
0.2729 0.2531 ~0.5841 —0.6693
0.2557 0.2531 ~0.5841 ~0.6693
—0.6428 —0.6627 —0.6353 -0.7675
—0.6428 —0.6627 —0.8425 —0.8867
-0.7572 -0.9263 -0.8544 —0.8867
—-0.9752 —0.9263 —0.8545 —0.8867
-1.3548 —1.2554 -1.3442 -1.0622
-1.5016 -1.3296
C,Hsg 0.3952 0.3845
0.3740 0.3200
0.3738 0.3200
0.3157 0.3200
0.2967 0.3200
0.2900 0.3200
0.2897 0.3200
-0.6008 ~0.8673
—0.6009 -0.8763
—0.6688 ~-0.8763

® All energies given in atomic units
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step. Instead of using a set of canonical SCF orbitals, localized orbitals are chosen
to describe the system. Although numerous techniques [11] exist for transforming
into a set of localized orbitals, in practice all lead to essentially the same result.
That is, a set of well localized orbitals is found for the atomic cores, molecular
bonds, and lone pairs in agreement with the usual chemical description of electron
pairs. The properties of localized orbitals such as their transferability and their
better convergence rate in CI expansion compared to that found using a canonical
set of molecular orbitals have been well documented [12-17]. Perhaps less well
appreciated has been the observation that the sets of core, bonding and antibond-
ing orbital energies are quasi-degenerate among themselves. In Table 1 are
presented examples for CHy4, C;H,, C;Hgs and CH3CN for the semi-empirical
CNDO/2 model where the localized orbitals ¢; and ¢+ are simply chosen as
linear and antilinear combinations of a hybridized set of primitive atomic orbitals
xa and yp on centres A and B respectively. That is

¢;=sina * ya+cosa - xp (1a)
¢ =COSa - ya—Sina * xp (1b)

where « is a ‘“‘polarity parameter’; the case of &« =45° meaning no polarity of
the bond. All this suggests a partitioning of H based on the average orbital
energies of the respective sets. The resultant perturbation expansion then has
denominators which are integral multiples of a small number of constants, the
constants being simply the differences among the various average orbital energies.

In this paper we develop this constant denominator perturbation theory for the
case of a minimum basis. Furthermore we assume that the core may be replaced
with a suitable pseudo potential. However, the method can be easily generalized
to cases where the core is explicitly considered and extensive basis sets used.
We begin by briefly reviewing the conventional Moller—Plesset and Nesbet—
Epstein partitionings of the Hamiltonian. The constant denominator partitioning
is then derived. Although any constant denominator can be chosen, we choose
to examine here the average orbital energies variationally modified so that the
truncated perturbation expanded wave function will yield the lowest bound for
the Rayleigh—Ritz optimization procedure

(W|Hly)
W)

Formulae are developed diagrammatically up to and including fourth order in
the perturbation for the energy. The formal N’ step found for contributions
from triple excitations is shown to be reduced into steps which are at most N°.
As examples, results are presented calculated within the semi-empirical PPP
[18] and CNDO/2 [19] model Hamiltonians

=E. (2)

2. Partitioning of the Hamiltonian

One starts any perturbation treatment for the energy by partitioning the Hamil-
tonian, H, into a completely solvable zero order part, H,, and a remainder
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known as the perturbation, V

H=H,+V (3a)
where
H()]@,‘) = E,Id)l) i= 0, 1, 2, [P (3b)

In addition, Hj is usually chosen to be a one particle operator in order that the
linked diagrammatic representation of the perturbation can be used

H0=§ Uo (Fy) (4a)
with

Ue|ba) = €a|da) (4b)

|D:)=A Lli b (4c)

&=l ea (4d)

ael

where A is the antisymmetrizer and u, is a single particle operator. In the case
of Moller—Plesset partitioning, Ho is chosen to be the Fock operator and therefore
due to Brillouin’s theorem the perturbation V contains only Coulombic bielec-
tronic repulsion and exchange integrals. In contrast, the Nesbet~Epstein par-
titioning is based on the matrix representation of the Schrodinger equation

Hyr=Ey &)

Hy, the zero order Hamiltonian is chosen simply as the diagonal of H with the
remaining off diagonal matrix forming the perturbation V. In the case of spin
adapted configurations, ¢, one obtains a corresponding spin adapted Nesbet-
Epstein partitioning. Calculations [20] show that this spin adapted partitioning
is more convergent than the ordinary expansion over determinants. However,
since the denominators in the perturbation expansion now are coupled by
bielectronic matrix elements, they cannot be factored to yield a linked diagram-
matic representation. In order to achieve the Nesbet-Epstein result from a
diagrammatic formulation of the perturbation one must first start from a Moller—
Plesset reference, generate the necessary diagrams and then group into geometric
sums classes of diagrams known as ladder diagrams. The geometric sums are
then replaced by inserting bielectronic interactions into the denominators of the
leading terms. This is essentially the procedure that Kelly [23] used with great
success for atomic systems. However Bartlett and Shavitt [24, 25] found in the
case of the linearized CPMET model {26] that Nesbet—Epstein partitioning led
to oscillatory behaviour and produced a slower convergence than that found for
Moller-Plesset partitioning [22].
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3. The Constant Denominator Partitioning

The quasi-degeneracies found among the sets of localized orbital energies allow
for a consideration of a partitioning of H based on the average values of the
respective sets. In the case of a minimum basis with a pseudo potential approxi-
mated core one has two sets, namely the bonding and antibonding orbitals {¢;}
and {¢ ;+} respectively. Therefore

Ho=§ZaiTai+§*Zaj*ai* (6)
V=H-H, - (D)
1 N

3 =ﬁ igl E; (8)
v L ¥ ©)
& =3 i; £ %

The resulting denominators found in the perturbation expansion, as for example
Ae;* =g;—€* (10a)
Aet ™ =gr+ei—em—g (10b)

are reduced to integral factors of a constant denominator, AE, given by
Ae =& &%, (10c¢)

One can improve on the partitioning with very little additional computational
effort by treating the constant denominator as a variational parameter, AAg,
with A chosen to give the best trial wave function

Ur)=lgo+ 3 (). | (112

Following the Rayleigh-Ritz variational principle, the resulting upper bound to
the true ground state energy is given by

W=p:2;%’§—2E (11b)
with
H,, =W,/ Hliby) (11c)
S= Y Sua (11d)
pa=1
Sp.a = (Up|tha). (11e)

The wave function corrections, |¢,), can be found from the perturbation equation

(Ho= o)+ VIdy-1)= ¥ Bl (122)
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or in terms of matrix elements

Tp,q + Vp,q—l = il Er‘sp,q—r (12b)
with

qu=<l//P|H0—gD|'rl/q> (12¢)

Vo = | V|thg). (12d)

Therefore Eq. (11b) can be expanded as

2 Tpq+ Z Vpg-1+ Z Vo

=0 pq=0
W =§o+%=
co 1+8

M M gq
Y X Y ES, r+2 Vort — E1Spar)

p=0g=2r=2

=g+ E;+
g9+ E; 1+S (12e)
or substituting for Vs, using Eq. (12b) yields
M M+1
ZO ZzErSpq rt ZO 22 ErSpM r+17 Z TpM+1
— 2 + +Pq r 14 r p=0
W=éotE, 1+S
M+1 g
22 Zz Z Spq r Z Tp,M+1
= o+ E,+472 7220 = (121)

1+8

By varying A, the partitioning changes, producing a new set of perturbation
energies E, (1) and matrix elements S, ,(A) and T,,(A). Noting that

BB T () (13)

Efm%m 250 e (130)
where the binomial coefficient (:1) is defined as

(:1)=—m—'(:—Lm—)‘ (13d)

Regrouping terms, we obtain

B2\ —E2 (14a)
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E<3) @
EPW =25 1-) )
’ n—2
E.0) = z Ec-ia-v(" 7). (14¢)
In a similar fashion
1 v r
=35 T lp-)(7 ) =1ra-n (152
from which is obtained expressions for the matrix elements S, ,(A) and T, ,(A).
1 pcl act p—l q_]' m+n m+n
sp,q(A)=szzon§0( - )( ; >(—1) A (15b)
1 oectact ip—1\rq—1 min mn
Tp,q(/\)zAP+q m‘A‘;O ng()( m )( n >(_1) i (1—/\) i Tp—m,q—n' (15C)

In the case of a perturbation expansion (11) carried out to first order Eq. (12f)
simplifies to

EZ()‘) - T1,2(/\)
1+S$(7)
E3(A)+E5(A)

=€o+E1+m—. (16a)

Substitution of relations (13) yields

2E, E; E;
FRTay
W=€0+E1+———S——. (17)
1+"—2
A

W:§0+E1+

The solution to d W/9A =0 is then given by

=H1-y)+V(1—y)’+4S] (18a)
where
y=E;/E-. (18b)

It is interesting to note that while the new perturbation series generated gives
the correct bound at second order, third order becomes simply a scaled Langhoff-
Davidson correction [27] for the unlinked terms arising out of the use of the
variational principle. That is

1
W=€()+E1+xE2 (193)
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E; E
Ex(0)=13-13[1-1]

1B

3 My—1+A] (19b)
We observe that Eq. (17) is the solution to the quadratic
AP=A(1-y)-8=0 (202)
S
X=S(A)=y_1+A' (20v)

. Hence substitution into Eq. (19b) yields the final scaled correction
1
Ea(A)=X'E2()\) *S(A). 21

This scaled Langhoff-Davidson correction should approximately cancel the error
caused by the unlinked clusters generated by Eq. (19a). If E;(A) is added to Eq.
(19a) for this purpose, then, of course, W is no longer necessarily an upper bound.

4. Perturbation Formulae to Fourth Order

The resulting perturbation or remainder of the Hamiltonian is defined for the
Constant Denominator Perturbation Theory (CDPT) model as

V=H—‘H0
=Y (p|M|q)nla a1+ DD (pql|rs)nlajataa,] (22a)

with indices p, ¢, » and s running over both the occupied and virtual space of
spin orbitals. The monoelectronic operator, M, and the normal product, 7, are
defined respectively as

M= 3 (lflanlasad+ (Gl —énlaial

+EAGH A%~ ¥ mlalan] (22b)

nlawadasaial - - a,]=(-1)"(ajatal - - - aias - - - a,) (22¢)

where p is the parity of the permutation required to put all creation operators,
a, before any annihilation operators, a; in Eq. (22c). The perturbation energy
terms may be expressed in the symmetric form

Esu—1={m|Eo— Holu-1r (23a)
Ezn = {tn|Eo— Holtpu)L (23b)
I'/jn> =RV|‘[/n—1> (230)
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where the subscript L means that only linked diagrammatic representations are
to be considered. The symmetric formulation and the rules for diagrammatic
usage have been previously given in Refs. [21] and [22].

In the case of the first order wave function, ¢, the diagrammatic equations for
single and double excitations are simply given by

o -

(24a)

R

(24b)

where the open single arrows pointed to the left and right indicate individual
particle and hole states respectively. The above equations are equivalent to

(i* |fl]>

lwi’;>={i*lf}1|<b§*>— ) (25a)
(7% 1kl

A, @i (25b)

i 1ch> {l*]*Hkl}lI(D;cl] Y=

where the pseudo one and two electron matrix elements {i*|/}; and {i*;*||kl},
are defined by their respective equations with

*7*| kD) = @5kl — (5|1 ). (25¢)

The resulting diagrammatic equation for the second order energy is then
given by

where the solid arrows are used to indicate summations over all possible
particle and hole states. Using Eqgs. (23) to (25) the above is re-expressed
algebraically as

E,= Z {1 o+ Z YLk kD (27a)

k>li>j

where the sums are over spin orbitals and

¥ 1= Ae{i*|jh (27b)
@** | |kl)r = 2Ae {i**|[kl}y (27¢)
{li*h ={*/1 (27d)

{k2|]i% %} = (%% |13 (27¢)



212 J. M. Cullen and M. C. Zerner

In a similar fashion the single and double excitations of the second order wave

function, i, that can be represented by connected diagrams are defined by the
following equations

>@>@+>@+

.
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where the solid arrows are used again to represent summations. In order to
preserve the antisymmetry property of the bielectronic pseudo matrix elements
all possible interactions on both open loops must be considered. Using the rules
of diagrammatic perturbation theory, Eqgs. (28a, b) can be re-expressed in alge-
braic form as

RN

5 e = A |1 = {i*| jL,|®} ) (292)
£

with

(i*| 2= % (k|M|jXi*|k} +{j ([ Mk*}k*jh —% (ei*|[ IR I*| kb

L X (| KR mh -E ¥ (kl||m*Y{m*i*||ki}

3 M (290)
and
ot e = CER ) — v 2%)
with

(i**||kl)s = —é (k|M|m)i**||mi}y +§ (m*|M|*Wm*j*|[kl}
—anI M |m){i*j*| [km} +§ (m M| Wi*m ™|kl
= I {mi*|lkn* W *j*|Iml}s = X (m*[In*){i*n*| [km}y
= L my |k} *n* [ ml}s = L (i m||n* Din | lkm},
+ L (mnl|KD{*7 Imnt+ X AP lm*n Y m* m* [kl
—% (*m||k{j*|mh +§ (¥ [kem* Y m*| I},
—% (my*||k){i*|m} +§ (EF*|lm* D{m ™|k} (294d)

As always, sums are over spin orbitals. The subscript, C, implies only connected
types of diagrammatic excitations. In addition, triply connected diagrammatic
excitations occur in ¢,. These are formally generated from the diagrammatic
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i>@§>®+

equation

(30a)

where all possible interactions on all possible loops are considered so that the
resulting compound matrix element {i*j*k*|lmn}, is symmetric with respect to
interchange of pairs of particle and hole lines. The compound matrix element
is defined as [22]

ofi* j* k* . iy ‘
Iwz(l m n) {i*/*k*|Imn}a|d 1n (30b)

(i*j*k*|lmn),
3Ae

**k*|lmn), = Z [—(*pl)Im){j*k*||lpm}y +

{i*/*k*|imn}, = (30¢)

Y p* k*|Imn}h — G plin){j*k*|jmph +
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+ )| lmny — pj* | [Im )i *k*| | pn} +
+(@* | p*mH p*k*||In}y —7*plImn){i*k*||Ip} +
+{(7* k| mp*Hi*p*|[In}s —(pk*||In {i* || pm} +
(k¥ p*n ) p** | Im}s — (pk *||mn ){i* || ip} +
+(*KkH| | p*r)i*p*||im}h]. (30d)

It can be seen that Eq. (30) is an N step for ab-initio methods, although for
semi-empirical schemes such as CNDO/2 and PPP the evaluation is N” in a
basis of bonds and antibonds. However, unlike Nesbet-Epstein [10] or Moller—
Plesset [9] partitioning schemes, there is no coupling of components through
the denominators. It will be seen in the next section, that when the resulting
energy diagrams arising from the connected triples are considered, all evaluation
steps can be reduced to N ® or less due to this decoupling.

In addition to the diagrammatically connected excitations, there is the possibility
of independent single and double excitations occurring simultaneously in the
system, resulting in net double, triple, or quadruple excitations. These excitations
are represented by the following disconnected diagrams.

o

= ® (31a)

=
>0

®

_ (31b)

DC

DC

- T ® (31c)

DC
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where the subscript “DC” implies only disconnected diagrams are considered
and double arrows are used to indicate that all possible combinations of indices
which give rise to the same individual excitation are taken into account. From
the factorization lemma [28], one knows that the product, &, of the disconnected
parts generates all possible (time) orderings that these components can have
with each other; for example

5. 0
0

>0 )
Since the resulting energy expansion will be expressed in terms of the individual
connected parts of the wave function diagrams, be they connected or discon-
nected, it is unnecessary to consider the algebraic formulations of Egs. (31). In
addition, many of the resulting exclusion principle violating (EPV) energy
diagrams are found to cancel against other contributions which are formally
triple and quadruple excitations due to differences in their spin parts. This was
previously demonstrated for the zero differential overlap (ZDO) case in Ref.
[22]. Although we do not make formal use of this cancellation and let it occur

naturally, we can for the ab-initio case develop a similar explicit cancellation
using Goldstone diagrams.

From the first order wave function, ¢, of Egs. (25), the second order energy,
E,, found from Eq. (23b) is given diagrammatically as Eq. (26). Similarly, the
use of ¢, with the second order wave function, ,, in Eq. (23a) leads to the
diagrammatic Eq. for Es, the third order energy.

Be 00 @@ (332)

where the disconnected double excitation found in the last term is generated
from the product of two single excitations as previously discussed. The above
yields the algebraic equation

Ea= Sl et T T K hi i ki

i>j k>

+2 Zl<kllIi*f*>1[{i*lk}1[{f*|l}1—{i*ll}x{i*lk}l] (34b)

i>j k>
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Finally, the fourth order energy, E, can also be diagrammatically generated
from ¢, and Eq. (23b)
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where all possible topologically distinct orderings of the disconnected parts of
the diagrams are taken. Thus algebraically one has

Es=S (M1t T 3 (k%4107 kD

+ ¥ Y Y {mn|i*i*k*L0* k¥ Imn),

ijk>Im>n

221 % (el 7% 70l {* I 37 *| 3 — {7 P {7k 1]

i>jk>1

+2 % Y Y {mn|i*i*) 4% lim b {k*|n )y

izjl>mkn

-X Z (kfl*>1{l|]*}1{]*'k}1{l*|l}1

i>jk

+2 X L [m||#* 0 dnlie b+ {im| |7 ln k0K 7kl mnb

ifkIm n

-2 Z X [m|[i*7*)dn kb +{m| 77l Ko k| [ Im b 7 nh

I>m ijk n

=¥ 2 ¥ Wm||i**){n |k ¥+ {m||i*P*hdn |k Hi* 7| inh k¥ m

i>j kl mn

XX X X @ mn){k* ] pghi*k*|mn}i{ 41| lpah

if ki m>np>q

=¥ T X T [mnddk* ¥ Ipgh{i*i* Imph{k*1*| [ngh

i>j k>l mn pq

~X 2 X (M mn ke * Pl lpghdi* ke [mph{i* 1% Ingh

ij kil mn pg

+ 3 ¥ X XA mn ) {k* U pah{i*7* gk * ¥ Imn (35b)

i>j k>l mn pq

where all matrix elements have been assumed real, so that for reversed ordered
pairs of diagrams, such as

o

only the first member is considered and multiplied by a factor of two to include
the contribution of the other partner.
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5. The Energy Contributions of the Connected Triple Excitations

The contributions from the connected triple excitations are given by

’ (Com.lected) — E§C-Trivle | pCD-Tripie (36a)
Triples
with
EEC-Triple =3 y {lmn|1*]*k*}2(l*]*k*|lm”>2 (36b)
ij>kl>m>n
ESD-Trivle _ o Y Y Smnli*prk*{i* ¥ [ Im{k ¥ n . (36¢)

i>jl>mkn

Diagrammatically, the connected-connected triple excitation contribution,
ESCTPe s represented by

C-Tri
E(i Triple - O

or algebraically this yields

BEe — 2 [ £ mlli*ayitpllim) || £ tanl 7tk o]

12A pg Litm
2

355 E [ S mnllgerndrwellonh ] |3 avllrivpilom) |
1

#5322 |3 i

x| £ tmalla*ehlp*klmn} |
kmn

1
435 2 X [ £ tanll ko 1utpk b | [ £ il a7 1)

3A pq jm Lkn

2
352 S Apnl 7kl | [ 5 i ivqllim:]

jkn
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#3322 [ S okl

<[ iyt i, ] (37b)

Similarly, the connected-disconnected triple excitation contribution, E5> TP
is represented by

s

EED—Trlple _

+2

(38a)

In the above, all orderings of the disconnected components are implied from
the factorization lemma [28]. The diagrams of Eq. (38a) are represented algebrai-
cally by

CD-Triple
ES ple _

[ {1]i*}h(i* lem)] [i%{m"HI'*k*h{j*k*Hpn}l]
LT[ SUHG )] | 3 mnllhda ke mns
XX

~2 23 [Stmljhtitpllimy] | £ ik bt on:

p il

+

23 % | S omliho#71 g || £l hlq e fmn

mi

=233 [ Ll Kkel o] | 5 mlli=71%pl i > |

n

+2 XL olkhda kel lmn | [ o] |77 g™ |
(38b)
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Thus it is seen that all contributions from connected triple excitations can be
evaluated in steps that are at most N °,

6. Results and Discussion

Results for the PPP model Hamiltonian are displayed in Table 2. The second
order energy provides a useful bound; for the linear molecules this energy is
below the Hartree-Fock energy. At fourth order the constant denominator
theory seems superior to either Moller—Plesset or Nesbet-Epstein theories, and
is very accurate in the linear cases. None of these theories are particularly good
for the aromatic situations with pathologicalily large 8 values.

In Table 3 the CNDO/2 model Hamiltonian [31-35] results corroborate these
findings. In particular the second order energy is a bound and in all cases (except
CH;NC: nonoptimized polarities (36)) is a better bound than the Hartree-Fock;
as hoped for, much of the correlation present in the doubles is already included
compared with CISD.

Comparing with the PPP results of Table 2 we might conclude that deficiencies
at second order are arising in strongly delocalized systems, and that these
deficiencies due to delocalization (single excitations) are not fully corrected at
fourth order. The third order, however, on the average appears to be as accurate
as CISD when compared with the exact results when known.

For small systems such as CH,, NH;, H,O, where singles and doubles might be
expected to contain most of the correlation, the fourth order results lie very
close to the CISD, Table 3. In addition, the fourth order CDPT values lie
between the MP and NE numbers. For larger systems CDPT is above fourth
order MP or NE theories, and below CISD by an amount that might be considered
reasonable.

The difference between optimized and nonoptimized polarities gives an indication
of the behavior and convergence of the perturbation series. As one goes to
higher orders this difference should approach zero. In the case of CH5NC, the
CDPT model reduces the difference between optimized and nonoptimized results
of —166 kcal/mole at first order to —45 kcal/mole at second order and

Table 4. Energy differences obtained between a reference function of optimized vs. standardized
bonds (kcal/mole)?

Fourth Order  Fourth Order  Fourth Order

gote CDPT MPPT NEPT CISD
CH;CN —6.6 -2.2 1.6 6.3 ~0.6
CH;3;NC —-166.1 ~34.2 17.4 283.9 -16.4
H,O -22.4 -1.7 0.4 8.7 ~0.6
NH; -9.1 -1.7 0.2 3.1 -0.4

1 kcal/mol = 1.6 milli~-Hartree
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—324 kcal/mole at fourth order, to be compared with a 17 kcal/mole difference
obtained from MP fourth order theory, a 284 kcal/mole difference obtained
from the Nesbet-Epstein fourth order theory, and —16 kcal/mole for CISD,
Table 4. Similarly, for H,O the difference of —22.4 kcal/mole has been reduced
to —1.7 kcal/mole and for NH; from —9.1 kcal/mole to —1.7 kcal/mole, In all
cases most of this correction is already at second order. The indication here is
that CDPT is nearly as accurate as is the more time-expensive fourth order
MPPT and CISD in treating polarization, and much more accurate then NEPT
which is very sensitive to the choice of zero’th order function.

Geometry predictions, Table 5, are as good as can be expected in the CNDO/2
treatment with essentially no difference in results between third and fourth order
theories.

Table 5. Geometry predictions of constant denominator perturbation theory

Bond Third Fourth
distance or order order

Molecule angle® result result Experimental Reference

CH, Reu 1.124 1.125 1.085 [37]

H,O" Rou 1.043 1.047 0.957 [38]
9(HOH) 104.5 102.6 104.5

H,0 Rou 1.043 1.047 0.957
9(HOH) 104.5 102.6 104.5

NH%R i ' 1.012 [39]
6(HNH) 106.7

NH, Ruy 1.078 1,012
9(HNH) 106.6 1.067

C,H, Ree 1.225 1.225 1.205 [40]
‘Rey 1.102 1.106 1.059

H,CO® Rco 1.273 1.256 1.210 413
Rcy 1.112 1.125 1.128

H,CO Reco 1.273 1.256 1.210
Ry 1.112 1.126 1.128

C,H, Rcc 1.335 1.337 1.336 [42]
Rcy 1.118 1.121 1.103

CH,CN® Ren 1.208 1.215 1.15 [43]
Rec 1.460 1.459 1.460
Rey 1.126 1.128 1.112

CH5;CN Ren 1.208 1.215 1.15
Recc 1.460 1.459 1.46
Rcn 1.127 1.130 1.112

CH;NC Ryc 1.208 1.208 1.18 [43]
Ren 1.419 1.419 1.44
Rcy 1.119 1.119 1.09

C,Hg Rec 1.476 1.473 1.532 [44]
Rcy 1.129 1.121 1.107

# All bond distances are given in Angstroms and angles in degrees
® Optimized bond polarities
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Tentatively we hold that the CDPT theory is the most stable of the fourth order
theories we have examined. The Nesbet-Epstein theory at fourth order is very
sensitive to the zero’th order function and can be unreliable. The Moller—Plesset
perturbation theory (MPPT) at fourth order appears stable. For small systems,
however, CDPT appears to lie closer to the exact answer where the numbers
are available. From Table 3 fourth order Moller-Plesset also seems to correct
for deficiencies in bond polarization of the zero’th order function. It is more
difficult to evaluate the relative performance of CDPT vs. MPPT for larger
systems where exact answers are not yet available. For such systems MPPT may
have an advantage of being size consistent at all orders, whereas the variational
procedure adapted at second order for CDPT introduces non-linked terms that
yield stability, but that are not corrected for until higher orders. This deficiency,
however, is not a consequence of the constant denominator perturbation theory,
but only of our choice of constant denominator. Denominators can be chosen
to yield a linked theory at all orders, and we are presently investigating such
choices.
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